Recent Radiance Field Papers
Search...
Abstract
Understanding the 3D geometry of transparent objects from RGB images is challenging due to their inherent physical properties, such as reflection and refraction. To address these difficulties, especially in scenarios with sparse views and dynamic environments, we introduce TRAN-D, a novel 2D Gaussian Splatting-based depth reconstruction method for transparent objects. Our key insight lies in separating transparent objects from the background, enabling focused optimization of Gaussians corresponding to the object. We mitigate artifacts with an object-aware loss that places Gaussians in obscured regions, ensuring coverage of invisible surfaces while reducing overfitting. Furthermore, we incorporate a physics-based simulation that refines the reconstruction in just a few seconds, effectively handling object removal and chain-reaction movement of remaining objects without the need for rescanning. TRAN-D is evaluated on both synthetic and real-world sequences, and it consistently demonstrated robust improvements over existing GS-based state-of-the-art methods. In comparison with baselines, TRAN-D reduces the mean absolute error by over 39% for the synthetic TRansPose sequences. Furthermore, despite being updated using only one image, TRAN-D reaches a {\delta} < 2.5 cm accuracy of 48.46%, over 1.5 times that of baselines, which uses six images. Code and more results are available at https://jeongyun0609.github.io/TRAN-D/.
Abstract
Recent advances in 3D neural representations and instance-level editing models have enabled the efficient creation of high-quality 3D content. However, achieving precise local 3D edits remains challenging, especially for Gaussian Splatting, due to inconsistent multi-view 2D part segmentations and inherently ambiguous nature of Score Distillation Sampling (SDS) loss. To address these limitations, we propose RoMaP, a novel local 3D Gaussian editing framework that enables precise and drastic part-level modifications. First, we introduce a robust 3D mask generation module with our 3D-Geometry Aware Label Prediction (3D-GALP), which uses spherical harmonics (SH) coefficients to model view-dependent label variations and soft-label property, yielding accurate and consistent part segmentations across viewpoints. Second, we propose a regularized SDS loss that combines the standard SDS loss with additional regularizers. In particular, an L1 anchor loss is introduced via our Scheduled Latent Mixing and Part (SLaMP) editing method, which generates high-quality part-edited 2D images and confines modifications only to the target region while preserving contextual coherence. Additional regularizers, such as Gaussian prior removal, further improve flexibility by allowing changes beyond the existing context, and robust 3D masking prevents unintended edits. Experimental results demonstrate that our RoMaP achieves state-of-the-art local 3D editing on both reconstructed and generated Gaussian scenes and objects qualitatively and quantitatively, making it possible for more robust and flexible part-level 3D Gaussian editing.
Abstract
Recently, Gaussian Splatting (GS) has received a lot of attention in surface reconstruction. However, while 3D objects can be of complex and diverse shapes in the real world, existing GS-based methods only limitedly use a single type of splatting primitive (Gaussian ellipse or Gaussian ellipsoid) to represent object surfaces during their reconstruction. In this paper, we highlight that this can be insufficient for object surfaces to be represented in high quality. Thus, we propose a novel framework that, for the first time, enables Gaussian Splatting to incorporate multiple types of (geometrical) primitives during its surface reconstruction process. Specifically, in our framework, we first propose a compositional splatting strategy, enabling the splatting and rendering of different types of primitives in the Gaussian Splatting pipeline. In addition, we also design our framework with a mixed-primitive-based initialization strategy and a vertex pruning mechanism to further promote its surface representation learning process to be well executed leveraging different types of primitives. Extensive experiments show the efficacy of our framework and its accurate surface reconstruction performance.
Abstract
We introduce a novel framework that integrates Neural Radiance Fields (NeRF) with Material Point Method (MPM) simulation to infer granular material properties from visual observations. Our approach begins by generating synthetic experimental data, simulating an plow interacting with sand. The experiment is rendered into realistic images as the photographic observations. These observations include multi-view images of the experiment's initial state and time-sequenced images from two fixed cameras. Using NeRF, we reconstruct the 3D geometry from the initial multi-view images, leveraging its capability to synthesize novel viewpoints and capture intricate surface details. The reconstructed geometry is then used to initialize material point positions for the MPM simulation, where the friction angle remains unknown. We render images of the simulation under the same camera setup and compare them to the observed images. By employing Bayesian optimization, we minimize the image loss to estimate the best-fitting friction angle. Our results demonstrate that friction angle can be estimated with an error within 2 degrees, highlighting the effectiveness of inverse analysis through purely visual observations. This approach offers a promising solution for characterizing granular materials in real-world scenarios where direct measurement is impractical or impossible.
RePaintGS: Reference-Guided Gaussian Splatting for Realistic and View-Consistent 3D Scene Inpainting
Abstract
Radiance field methods, such as Neural Radiance Field or 3D Gaussian Splatting, have emerged as seminal 3D representations for synthesizing realistic novel views. For practical applications, there is ongoing research on flexible scene editing techniques, among which object removal is a representative task. However, removing objects exposes occluded regions, often leading to unnatural appearances. Thus, studies have employed image inpainting techniques to replace such regions with plausible content - a task referred to as 3D scene inpainting. However, image inpainting methods produce one of many plausible completions for each view, leading to inconsistencies between viewpoints. A widely adopted approach leverages perceptual cues to blend inpainted views smoothly. However, it is prone to detail loss and can fail when there are perceptual inconsistencies across views. In this paper, we propose a novel 3D scene inpainting method that reliably produces realistic and perceptually consistent results even for complex scenes by leveraging a reference view. Given the inpainted reference view, we estimate the inpainting similarity of the other views to adjust their contribution in constructing an accurate geometry tailored to the reference. This geometry is then used to warp the reference inpainting to other views as pseudo-ground truth, guiding the optimization to match the reference appearance. Comparative evaluation studies have shown that our approach improves both the geometric fidelity and appearance consistency of inpainted scenes.
Abstract
3D Gaussian Splatting (3DGS) has demonstrated its potential in reconstructing scenes from unposed images. However, optimization-based 3DGS methods struggle with sparse views due to limited prior knowledge. Meanwhile, feed-forward Gaussian approaches are constrained by input formats, making it challenging to incorporate more input views. To address these challenges, we propose RegGS, a 3D Gaussian registration-based framework for reconstructing unposed sparse views. RegGS aligns local 3D Gaussians generated by a feed-forward network into a globally consistent 3D Gaussian representation. Technically, we implement an entropy-regularized Sinkhorn algorithm to efficiently solve the optimal transport Mixture 2-Wasserstein $(\text{MW}_2)$ distance, which serves as an alignment metric for Gaussian mixture models (GMMs) in $\mathrm{Sim}(3)$ space. Furthermore, we design a joint 3DGS registration module that integrates the $\text{MW}_2$ distance, photometric consistency, and depth geometry. This enables a coarse-to-fine registration process while accurately estimating camera poses and aligning the scene. Experiments on the RE10K and ACID datasets demonstrate that RegGS effectively registers local Gaussians with high fidelity, achieving precise pose estimation and high-quality novel-view synthesis. Project page: https://3dagentworld.github.io/reggs/.
Abstract
Wireless channel modeling in complex environments is crucial for wireless communication system design and deployment. Traditional channel modeling approaches face challenges in balancing accuracy, efficiency, and scalability, while recent neural approaches such as neural radiance field (NeRF) suffer from long training and slow inference. To tackle these challenges, we propose voxelized radiance field (VoxelRF), a novel neural representation for wireless channel modeling that enables fast and accurate synthesis of spatial spectra. VoxelRF replaces the costly multilayer perception (MLP) used in NeRF-based methods with trilinear interpolation of voxel grid-based representation, and two shallow MLPs to model both propagation and transmitter-dependent effects. To further accelerate training and improve generalization, we introduce progressive learning, empty space skipping, and an additional background entropy loss function. Experimental results demonstrate that VoxelRF achieves competitive accuracy with significantly reduced computation and limited training data, making it more practical for real-time and resource-constrained wireless applications.
Abstract
Reconstructing and segmenting scenes from unconstrained photo collections obtained from the Internet is a novel but challenging task. Unconstrained photo collections are easier to get than well-captured photo collections. These unconstrained images suffer from inconsistent lighting and transient occlusions, which makes segmentation challenging. Previous segmentation methods cannot address transient occlusions or accurately restore the scene's lighting conditions. Therefore, we propose Seg-Wild, an interactive segmentation method based on 3D Gaussian Splatting for unconstrained image collections, suitable for in-the-wild scenes. We integrate multi-dimensional feature embeddings for each 3D Gaussian and calculate the feature similarity between the feature embeddings and the segmentation target to achieve interactive segmentation in the 3D scene. Additionally, we introduce the Spiky 3D Gaussian Cutter (SGC) to smooth abnormal 3D Gaussians. We project the 3D Gaussians onto a 2D plane and calculate the ratio of 3D Gaussians that need to be cut using the SAM mask. We also designed a benchmark to evaluate segmentation quality in in-the-wild scenes. Experimental results demonstrate that compared to previous methods, Seg-Wild achieves better segmentation results and reconstruction quality. Our code will be available at https://github.com/Sugar0725/Seg-Wild.
Abstract
In this paper, we introduce LangSplatV2, which achieves high-dimensional feature splatting at 476.2 FPS and 3D open-vocabulary text querying at 384.6 FPS for high-resolution images, providing a 42 $\times$ speedup and a 47 $\times$ boost over LangSplat respectively, along with improved query accuracy. LangSplat employs Gaussian Splatting to embed 2D CLIP language features into 3D, significantly enhancing speed and learning a precise 3D language field with SAM semantics. Such advancements in 3D language fields are crucial for applications that require language interaction within complex scenes. However, LangSplat does not yet achieve real-time inference performance (8.2 FPS), even with advanced A100 GPUs, severely limiting its broader application. In this paper, we first conduct a detailed time analysis of LangSplat, identifying the heavyweight decoder as the primary speed bottleneck. Our solution, LangSplatV2 assumes that each Gaussian acts as a sparse code within a global dictionary, leading to the learning of a 3D sparse coefficient field that entirely eliminates the need for a heavyweight decoder. By leveraging this sparsity, we further propose an efficient sparse coefficient splatting method with CUDA optimization, rendering high-dimensional feature maps at high quality while incurring only the time cost of splatting an ultra-low-dimensional feature. Our experimental results demonstrate that LangSplatV2 not only achieves better or competitive query accuracy but is also significantly faster. Codes and demos are available at our project page: https://langsplat-v2.github.io.
Abstract
3D Gaussian Splatting (3DGS) has demonstrated impressive capabilities in novel view synthesis. However, rendering reflective objects remains a significant challenge, particularly in inverse rendering and relighting. We introduce RTR-GS, a novel inverse rendering framework capable of robustly rendering objects with arbitrary reflectance properties, decomposing BRDF and lighting, and delivering credible relighting results. Given a collection of multi-view images, our method effectively recovers geometric structure through a hybrid rendering model that combines forward rendering for radiance transfer with deferred rendering for reflections. This approach successfully separates high-frequency and low-frequency appearances, mitigating floating artifacts caused by spherical harmonic overfitting when handling high-frequency details. We further refine BRDF and lighting decomposition using an additional physically-based deferred rendering branch. Experimental results show that our method enhances novel view synthesis, normal estimation, decomposition, and relighting while maintaining efficient training inference process.